Математика для анализа данных

Поможем специалистам по Data Science освоить математические концепции: видеть взаимосвязь в массивах данных и делать точные прогнозы.

Математика для анализа данных
Цена
20000
Кэшбэк до 7,5%
5 недель5 недель
Сертификат гос. образцаСертификат гос. образца
РусскийРусский
Нетология
Купить с кэшбэком

Описание:

Чтобы увидеть в больших объёмах данных закономерности, аналитик опирается на линейную алгебру, математический анализ и теорию вероятности. Если специалист не разбирается в этих направлениях — гипотезы и выводы будут неточными. Это как запустить ракету в космос, не зная траекторию полёта.

Мы создали вводный курс в математику, чтобы вы начали исследовать данные с важным бэкграундом для Data Science и выбирали алгоритмы, которые будут решать поставленную задачу.

Без математики и статистики невозможно использовать алгоритмы машинного обучения, а значит — правильно управлять данными

Ваши ключевые навыки по итогам обучения:

  • Проверять векторы на линейную зависимость.
  • Решать системы линейных уравнений в матричной форме.
  • Вычислять собственные векторы и числа для матрицы.
  • Производить матричные разложения.
  • Вычислять производную функции нескольких аргументов.
  • Использовать различные методы оптимизации для поиска локального минимума функции.
  • Вычислять математическое ожидание и дисперсию дискретной случайной величины.
  • Использовать формулу Байеса для вычисления апостериорной вероятности.
  • Использовать закон больших чисел для оценки математического ожидания.

Программа курса:

Линейная алгебра

  • Это базовый раздел математики. Он даёт понимание, как компьютер представляет данные и управляет ими.

Математический анализ

  • Узнаете, какая теория стоит за понятием «машинное обучение». Поймёте, с помощью каких алгоритмов математического анализа компьютер ищет параметры моделей.

Теория вероятности

  • Этот раздел математики поможет провести анализ гипотезы с помощью цифр и понять, какие выбрать шаги, чтобы решить задачу.